Maintenance is the combination of all technical, administrative, and managerial actions during the life cycle of an item intended to retain it in, or restore it to a state in which it can perform the required function under normal stated operating conditions. Maintenance management is a crucial element that governs the economic value of the organization itself. Maintenance costs constitute a major part of the total operating costs of all construction equipment. Currently, industries are facing a lot of challenges encountered due to the continually evolving world of technologies, and environmental and safety requirements. Thus, the study was focused on Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection. The evaluation was a multiple-criteria decision-making problem. The fuzzy AHP and fuzzy TOPSIS methods were used as an evaluation tool. To achieve the objective, the data were collected from primary and secondary source of data collection. The method of data analysis for this study was made by integrated methodology, and the analysis was made by using Microsoft Excel. The study revealed that skill development, production waste, product quality, health and safety training, and facilities are important criteria. The finding revealed that preventive maintenance and time-based maintenance were the best maintenance strategies.
Published in | International Journal of Management and Fuzzy Systems (Volume 11, Issue 2) |
DOI | 10.11648/j.ijmfs.20251102.11 |
Page(s) | 33-61 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Fuzzy AHP, Fuzzy TOPSIS, Construction Equipment, and Maintenance Strategy
Saaty scale | Linguistic Variable | Fuzzy Number | Triangular Fuzzy Scale | Reverse Triangular Fuzzy Number |
---|---|---|---|---|
| Equally preferred (EP) |
| (1, 1, 3) |
|
| Moderate preferred (MP) |
| (1, 3, 5) |
|
| Strong preferred (SP) |
| (3, 5, 7) |
|
| Very strong preferred (VSP) |
| (5, 7, 9) |
|
| Absolute preferred (AP) |
| (7, 9, 9) |
|
Evaluation of Dimension | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dimension | Positive | Negative | Compared Dimension | |||||||
AP | VSP | SP | MP | EP | NMP | NSP | NVSP | NAP | ||
V1 | V2 | |||||||||
---- | ---- | |||||||||
V1 | V6 | |||||||||
V2 | V3 | |||||||||
---- | ---- | |||||||||
V2 | V6 | |||||||||
V3 | V4 | |||||||||
V3 | V5 | |||||||||
V3 | V6 | |||||||||
V4 | V5 | |||||||||
V5 | V6 |
Linguistic Variable | Fuzzy numbers | Membership function | Domain | Triangular Fuzzy Scale (l, m, u) |
---|---|---|---|---|
Just equal |
| 1 | 1 | (1, 1, 1) |
Equally preferred | µ(A)(x) = (3-x) / (3-1) | 1 ≤ x ≤ 3 | (1, 1, 3) | |
Moderately preferred |
| µ(A)(x) = (x-1) / (3-1) | 1 ≤ x ≤ 3 | (1, 3, 5) |
µ(A)(x) = (5-x) / (5-3) | 3 ≤ x ≤ 5 | |||
Strongly preferred |
| µ(A)(x) = (x-3) / (5-3) | 3 ≤ x ≤ 5 | (3, 5, 7) |
µ(A)(x) = (7-x) / (7-5) | 5 ≤ x ≤ 7 | |||
Very strongly preferred |
| µ(A)(x) = (x-5) / (7-5) | 5 ≤ x ≤ 7 | (5, 7, 9) |
µ(A)(x) = (9-x) / (9-7) | 7 ≤ x ≤ 9 | |||
Absolutely preferred |
| µ(A)(x) = (x-7) / (9-7) | 7 ≤ x ≤ 9 | (7, 9, 9) |
Matrix Dimension | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Attribute Grade | Fuzzy Linguistic Terms for Decision-Making | Triangular Fuzzy Number |
---|---|---|
1 | Very Low Important | (1, 2, 3) |
2 | Low Important | (2, 3, 4) |
3 | Medium Low | |
4 | Medium Important | (3, 4, 5) |
5 | Medium High | |
6 | Highly Important | (4, 5, 6) |
7 | Very high Important | (5, 7, 9) |
Parameter | Frequency | Percentage (%) | Parameter | Frequency | Percentage (%) |
---|---|---|---|---|---|
Type of organization | Gender | ||||
Clients | 4 | 26.67% | Male | 11 | 73.33% |
Contractors | 7 | 46.67% | Female | 4 | 26.67% |
Consultants | 4 | 26.67% | Work experience of respondents | ||
Educational level | 6-10 years | 5 | 33.33% | ||
MSc. and above | 15 | 100.00% | > 15 years | 10 | 66.67% |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
C1 | 1.000, 1.000, 1.000 | 0.302, 0.412, 0.712 | 2.132, 2.987, 3.757 | 1.304, 1.864, 2.453 | 2.629, 3.518, 4.438 | 0.565, 0.720, 0.928 |
C2 | 1.335, 2.430, 3.483 | 1.000, 1.000, 1.000 | 4.328, 5.426, 6.489 | 2.130, 3.028, 4.058 | 4.434, 5.528, 6.499 | 0.857, 1.162, 1.505 |
C3 | 0.259, 0.322, 0.438 | 0.159, 0.192, 0.248 | 1.000, 1.000, 1.000 | 0.253, 0.316, 0.423 | 1.252, 1.864, 2.781 | 0.430, 0.603, 0.890 |
C4 | 0.376, 0.486, 0.677 | 0.246, 0.330, 0.470 | 2.268, 3.078, 3.870 | 1.000, 1.000, 1.000 | 1.550, 2.502, 3.537 | 1.048, 1.552, 2.192 |
C5 | 0.225, 0.284, 0.380 | 0.154, 0.181, 0.226 | 0.360, 0.536, 0.799 | 0.269, 0.373, 0.578 | 1.000, 1.000, 1.000 | 0.780, 1.030, 1.380 |
C6 | 1.122, 1.463, 1.896 | 0.664, 0.860, 1.167 | 1.123, 1.659, 2.325 | 0.456, 0.644, 0.954 | 0.725, 0.971, 1.282 | 1.000, 1.000, 1.000 |
Main Criteria | Fuzzy Weights | BNP | Crisp weight (BNPw) | Rank | ||
---|---|---|---|---|---|---|
Added value (C1) | 0.124 | 0.191 | 0.299 | 0.205 | 0.192 | 2 |
Applicability (C2) | 0.208 | 0.328 | 0.493 | 0.343 | 0.322 | 1 |
Equipment process control (C3) | 0.057 | 0.086 | 0.137 | 0.093 | 0.088 | 5 |
Safety (C4) | 0.103 | 0.163 | 0.258 | 0.175 | 0.164 | 3 |
Cost (C5) | 0.051 | 0.078 | 0.123 | 0.084 | 0.079 | 6 |
Effectiveness (C6) | 0.100 | 0.154 | 0.243 | 0.166 | 0.156 | 4 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Product Quality | 0.258 | 0.335 | 0.434 | 0.342 | 0.335 | 2 |
Production waste | 0.272 | 0.348 | 0.439 | 0.353 | 0.346 | 1 |
Profit | 0.114 | 0.146 | 0.188 | 0.149 | 0.146 | 4 |
Delivery time | 0.133 | 0.171 | 0.224 | 0.176 | 0.173 | 3 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Technology | 0.087 | 0.123 | 0.178 | 0.129 | 0.124 | 4 |
Skill development | 0.150 | 0.218 | 0.305 | 0.224 | 0.215 | 1 |
Growth innovation | 0.058 | 0.082 | 0.120 | 0.086 | 0.083 | 7 |
Technique feasibility | 0.089 | 0.128 | 0.183 | 0.133 | 0.128 | 3 |
Reliability | 0.058 | 0.082 | 0.118 | 0.086 | 0.082 | 8 |
Availability | 0.097 | 0.140 | 0.202 | 0.147 | 0.140 | 2 |
Utilization | 0.078 | 0.112 | 0.161 | 0.117 | 0.112 | 6 |
Redundancy | 0.081 | 0.116 | 0.167 | 0.122 | 0.116 | 5 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Spare part inventories | 0.184 | 0.222 | 0.263 | 0.223 | 0.22 | 2 |
Level of service | 0.185 | 0.226 | 0.280 | 0.231 | 0.23 | 1 |
Criticality of Machine | 0.162 | 0.201 | 0.248 | 0.204 | 0.20 | 3 |
Life Cycle Costing | 0.151 | 0.184 | 0.224 | 0.186 | 0.18 | 4 |
Long-term Funding Strategy | 0.142 | 0.167 | 0.198 | 0.169 | 0.17 | 5 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Facilities | 0.246 | 0.340 | 0.465 | 0.350 | 0.339 | 2 |
Health and safety training | 0.264 | 0.360 | 0.486 | 0.370 | 0.359 | 1 |
Personnel safety | 0.100 | 0.135 | 0.184 | 0.139 | 0.135 | 4 |
Environment | 0.122 | 0.165 | 0.231 | 0.173 | 0.167 | 3 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Production cost | 0.170 | 0.209 | 0.258 | 0.212 | 0.209 | 2 |
Consultation | 0.155 | 0.193 | 0.242 | 0.197 | 0.194 | 4 |
Spare parts cost | 0.173 | 0.220 | 0.274 | 0.222 | 0.219 | 1 |
Specialist employee | 0.148 | 0.183 | 0.230 | 0.187 | 0.184 | 5 |
Hardware and software | 0.158 | 0.194 | 0.239 | 0.197 | 0.194 | 3 |
Sub- criteria | Fuzzy Weights(wi) | BNPi | BNPwi | Rank | ||
---|---|---|---|---|---|---|
Efficiency | 0.107 | 0.151 | 0.218 | 0.159 | 0.153 | 2 |
Productivity | 0.170 | 0.244 | 0.339 | 0.251 | 0.241 | 1 |
Customer satisfaction | 0.066 | 0.092 | 0.133 | 0.097 | 0.093 | 6 |
Maintainability | 0.102 | 0.145 | 0.207 | 0.152 | 0.145 | 4 |
Reparability | 0.065 | 0.091 | 0.131 | 0.095 | 0.092 | 7 |
Conformity | 0.105 | 0.150 | 0.215 | 0.157 | 0.150 | 3 |
Functionality | 0.089 | 0.126 | 0.181 | 0.132 | 0.126 | 5 |
Dimension | Local Weight | Sub criteria (Cij) | Local Weights | Global Weights | Ranking by Category | Overall Ranking |
---|---|---|---|---|---|---|
Added Value | 0.192 | Product Quality | 0.335 | 0.064 | 2 | 3 |
Production waste | 0.346 | 0.066 | 1 | 2 | ||
Profit | 0.146 | 0.028 | 4 | 13 | ||
Delivery time | 0.173 | 0.033 | 3 | 12 | ||
Applicability | 0.322 | Technology | 0.124 | 0.040 | 4 | 8 |
Skill development | 0.215 | 0.069 | 1 | 1 | ||
Growth innovation | 0.083 | 0.027 | 7 | 15 | ||
Technique feasibility | 0.128 | 0.041 | 3 | 7 | ||
Reliability | 0.082 | 0.027 | 8 | 16 | ||
Availability | 0.140 | 0.045 | 2 | 6 | ||
Utilization | 0.112 | 0.036 | 6 | 11 | ||
Redundancy | 0.116 | 0.037 | 5 | 10 | ||
Equipment Process Control | 0.088 | Spare part inventories | 0.220 | 0.019 | 2 | 23 |
Level of service | 0.228 | 0.020 | 1 | 21 | ||
Criticality of Machine | 0.201 | 0.018 | 3 | 24 | ||
Life Cycle Costing | 0.184 | 0.016 | 4 | 27 | ||
Long-term Funding Strategy | 0.167 | 0.015 | 5 | 30 | ||
Safety | 0.164 | Facilities | 0.339 | 0.056 | 2 | 5 |
Health and safety training | 0.359 | 0.059 | 1 | 4 | ||
Personnel safety | 0.135 | 0.022 | 4 | 20 | ||
Environment | 0.167 | 0.027 | 3 | 14 | ||
Cost | 0.079 | Production cost | 0.209 | 0.017 | 2 | 26 |
Consultation | 0.194 | 0.015 | 4 | 29 | ||
Spare parts cost | 0.219 | 0.017 | 1 | 25 | ||
Specialist employee | 0.184 | 0.015 | 5 | 31 | ||
Hardware and software | 0.194 | 0.015 | 3 | 28 | ||
Effectiveness | 0.156 | Efficiency | 0.153 | 0.024 | 2 | 17 |
Productivity | 0.241 | 0.038 | 1 | 9 | ||
Customer satisfaction | 0.093 | 0.014 | 6 | 32 | ||
Maintainability | 0.145 | 0.023 | 4 | 19 | ||
Reparability | 0.092 | 0.014 | 7 | 33 | ||
Conformity | 0.150 | 0.023 | 3 | 18 | ||
Functionality | 0.126 | 0.020 | 5 | 22 |
Linguistic variable | Corresponding triangular fuzzy number |
---|---|
Very Low Important (VLI) | (1, 2, 3) |
Low Important (LI) | (2, 3, 4) |
Moderately Important (MI) | (3, 4, 5) |
Highly Important (HI) | (4, 5, 6) |
Extremely Important (EI) | (5, 7, 9) |
Criteria | Alternatives | |||||||
---|---|---|---|---|---|---|---|---|
CM | TBM | PM | TPM | CBM | OM | RM | RCM | |
C1 | 3.267, 4.267, 5.133 | 3.733, 4.867, 5.933 | 2.933, 4.067, 5.067 | 3.400, 4.533, 5.533 | 2.467, 3.533, 4.467 | 2.200, 3.200, 4.067 | 2.667, 3.733, 4.533 | 2.933, 3.933, 4.933 |
C2 | 3.933, 5.2006.267 | 4.000, 5.200, 6.267 | 2.667, 3.733, 4.600 | 2.933, 4.000, 4.933 | 2.400, 3.400, 4.133 | 2.533, 3.533, 4.133 | 3.733, 4.867, 5.933 | 3.000, 4.067, 5.000 |
C3 | 3.733, 4.867, 5.667 | 4.067, 5.267, 6.200 | 3.067, 4.133, 4.667 | 3.200, 4.400, 5.400 | 3.933, 5.000, 6.067 | 2.733, 3.733, 4.267 | 2.667, 3.667, 4.467 | 2.533, 3.533, 4.400 |
C4 | 3.333, 4.533, 5.533 | 3.933, 5.200, 6.333 | 2.800, 3.800, 4.533 | 2.933, 4.133, 5.067 | 2.733, 3.800, 4.867 | 2.200, 3.200, 4.133 | 2.200, 3.200, 4.000 | 2.600, 3.600, 4.467 |
C5 | 2.600, 3.600, 4.467 | 3.800, 5.000, 5.800 | 4.133, 5.400, 6.600 | 2.933, 3.933, 4.733 | 3.067, 4.133, 5.200 | 3.533, 4.800, 6.067 | 1.867, 2.867, 3.867 | 1.867, 2.867, 3.867 |
C6 | 2.200, 3.200, 4.200 | 3.600, 4.733, 5.867 | 4.600, 6.267, 7.933 | 2.933, 3.933, 4.933 | 3.200, 4.333, 5.467 | 2.867, 3.867, 4.867 | 2.533, 3.600, 4.667 | 2.333, 3.333, 4.333 |
C7 | 2.400, 3.400, 4.400 | 3.333, 4.467, 5.600 | 3.800, 4.867, 5.933 | 2.533, 3.600, 4.667 | 2.600, 3.600, 4.600 | 3.467, 4.667, 5.867 | 2.200, 3.200, 4.200 | 2.133, 3.133, 4.133 |
C8 | 2.600, 3.600, 4.600 | 3.467, 4.600, 5.733 | 4.133, 5.333, 6.533 | 2.533, 3.667, 4.800 | 2.800, 4.000, 5.200 | 3.333, 4.600, 5.867 | 2.200, 3.200, 4.200 | 2.267, 3.267, 4.267 |
C9 | 2.200, 3.200, 4.200 | 3.133, 4.133, 5.133 | 3.800, 5.000, 6.200 | 3.600, 4.733, 5.867 | 2.733, 3.733, 4.733 | 2.533, 3.533, 4.533 | 2.133, 3.133, 4.133 | 2.133, 3.133, 4.133 |
C10 | 2.267, 3.267, 4.267 | 3.533, 4.667, 5.800 | 4.000, 5.133, 6.267 | 3.467, 4.733, 6.000 | 2.533, 3.667, 4.800 | 2.533, 3.533, 4.533 | 2.133, 3.133, 4.133 | 2.267, 3.267, 4.267 |
C11 | 2.533, 3.533, 4.533 | 3.200, 4.200, 5.200 | 3.667, 4.733, 5.800 | 2.800, 3.800, 4.800 | 2.600, 3.733, 4.867 | 3.133, 4.133, 5.333 | 2.400, 3.133, 4.133 | 2.333, 3.133, 4.133 |
C12 | 2.867, 3.733, 4.800 | 3.667, 4.600, 5.733 | 3.733, 4.733, 5.867 | 2.933, 4.067, 5.333 | 3.267, 4.400, 5.667 | 3.067, 4.067, 5.067 | 2.533, 3.400, 4.400 | 2.333, 3.200, 4.200 |
C13 | 2.400, 3.400, 4.400 | 3.333, 4.467, 5.600 | 3.933, 5.267, 6.600 | 2.800, 3.867, 4.933 | 3.333, 4.533, 5.733 | 2.533, 3.533, 4.533 | 2.733, 3.733, 4.733 | 2.800, 3.800, 4.800 |
C14 | 2.400, 3.400, 4.400 | 3.467, 4.467, 5.467 | 3.800, 4.933, 6.067 | 3.400, 4.467, 5.533 | 3.067, 4.133, 5.200 | 2.600, 3.600, 4.600 | 2.000, 3.000, 4.000 | 1.933, 3.000, 4.067 |
C15 | 2.267, 3.267, 4.267 | 3.667, 4.733, 5.800 | 3.867, 5.067, 6.067 | 3.333, 4.333, 5.133 | 2.733, 3.733, 4.733 | 3.133, 4.267, 5.200 | 2.600, 3.600, 4.400 | 2.733, 3.733, 4.533 |
C16 | 2.267, 3.267, 4.067 | 3.467, 4.600, 5.533 | 3.933, 5.267, 6.400 | 3.200, 4.333, 5.467 | 3.267, 4.467, 5.467 | 3.467, 4.667, 5.667 | 2.867, 3.667, 4.667 | 3.000, 3.667, 4.733 |
C17 | 2.800, 3.400, 4.400 | 4.000, 5.000, 6.200 | 4.333, 5.533, 7.000 | 3.133, 4.000, 5.133 | 2.733, 3.467, 4.467 | 3.067, 4.067, 5.200 | 2.467, 3.067, 4.067 | 2.867, 3.467, 4.467 |
C18 | 2.867, 3.333, 4.333 | 3.933, 5.133, 6.600 | 3.933, 4.867, 6.067 | 2.933, 3.667, 4.667 | 3.133, 4.067, 5.267 | 3.400, 4.333, 5.533 | 2.867, 3.400, 4.467 | 3.000, 3.600, 4.600 |
C19 | 3.400, 3.533, 4.533 | 3.800, 4.533, 5.733 | 4.600, 4.933, 6.267 | 2.933, 3.733, 4.733 | 2.933, 3.933, 4.933 | 4.467, 5.600, 7.133 | 3.933, 5.067, 6.600 | 2.000, 2.800, 3.800 |
C20 | 2.533, 3.333, 4.333 | 3.733, 4.667, 5.800 | 3.267, 4.200, 5.333 | 2.867, 4.067, 5.267 | 2.267, 3.067, 4.067 | 3.400, 4.333, 5.467 | 3.600, 4.600, 6.000 | 2.733, 3.533, 4.533 |
C21 | 2.467, 3.267, 4.267 | 3.800, 4.800, 6.000 | 3.200, 4.133, 5.267 | 2.533, 3.400, 4.467 | 2.933, 4.067, 5.200 | 3.600, 4.533, 5.667 | 4.000, 5.067, 6.533 | 2.533, 3.400, 4.467 |
C22 | 3.267, 4.067, 5.067 | 3.467, 4.600, 5.733 | 4.000, 5.267, 6.533 | 2.667, 3.667, 4.667 | 3.400, 4.600, 5.800 | 3.533, 4.733, 5.933 | 2.867, 3.867, 4.867 | 2.267, 3.267, 4.267 |
C23 | 2.400, 3.400, 4.400 | 3.200, 4.267, 5.333 | 3.800, 4.933, 6.067 | 2.800, 3.800, 4.800 | 2.267, 3.267, 4.267 | 3.267, 4.267, 5.267 | 2.533, 3.600, 4.667 | 2.000, 3.000, 4.000 |
C24 | 2.333, 3.333, 4.333 | 2.733, 3.800, 4.867 | 4.000, 5.133, 6.267 | 2.467, 3.667, 4.867 | 3.000, 4.067, 5.133 | 3.467, 4.533, 5.600 | 2.600, 3.733, 4.867 | 2.467, 3.467, 4.467 |
C25 | 2.600, 3.600, 4.600 | 2.867, 3.933, 5.000 | 3.467, 4.533, 5.600 | 3.000, 4.067, 5.133 | 2.733, 3.733, 4.733 | 3.333, 4.400, 5.467 | 2.533, 3.533, 4.533 | 2.200, 3.200, 4.200 |
C26 | 2.400, 3.400, 4.400 | 3.467, 4.733, 6.000 | 4.000, 5.333, 6.667 | 3.200, 4.333, 5.467 | 3.000, 4.067, 5.133 | 3.533, 4.600, 5.667 | 2.733, 3.800, 4.867 | 2.000, 3.000, 4.000 |
C27 | 2.533, 3.533, 4.533 | 3.133, 4.200, 5.267 | 4.000, 5.267, 6.533 | 2.733, 3.800, 4.867 | 3.467, 4.600, 5.733 | 3.200, 4.200, 5.200 | 2.600, 3.667, 4.733 | 2.400, 3.400, 4.400 |
C28 | 2.467, 3.467, 4.467 | 3.200, 4.333, 5.467 | 3.733, 4.933, 6.133 | 2.600, 3.667, 4.733 | 3.400, 4.600, 5.800 | 3.133, 4.200, 5.267 | 2.600, 3.600, 4.600 | 1.933, 2.933, 3.933 |
C29 | 2.133, 3.133, 4.133 | 3.333, 4.467, 5.600 | 4.000, 5.267, 6.533 | 3.200, 4.467, 5.733 | 3.067, 4.133, 5.200 | 3.733, 4.867, 6.000 | 2.933, 3.933, 4.933 | 2.200, 3.200, 4.200 |
C30 | 2.333, 3.333, 4.333 | 3.267, 4.400, 5.533 | 3.800, 4.933, 6.067 | 3.400, 4.467, 5.533 | 2.533, 3.533, 4.533 | 3.000, 4.133, 5.267 | 2.600, 3.667, 4.733 | 1.867, 2.867, 3.867 |
C31 | 2.200, 3.200, 4.200 | 2.600, 3.600, 4.600 | 3.400, 4.533, 5.667 | 2.933, 3.933, 4.933 | 2.600, 3.667, 4.733 | 2.867, 4.000, 5.133 | 2.533, 3.533, 4.533 | 2.467, 3.533, 4.600 |
C32 | 2.867, 4.000, 5.133 | 3.067, 4.067, 5.067 | 3.667, 4.867, 6.067 | 2.933, 4.000, 5.067 | 3.267, 4.333, 5.400 | 3.067, 4.267, 5.467 | 2.733, 3.867, 5.000 | 2.667, 3.733, 4.800 |
C33 | 3.000, 4.000, 5.000 | 3.600, 4.667, 5.733 | 2.933, 4.133, 5.333 | 2.800, 3.800, 4.800 | 3.067, 4.200, 5.333 | 2.867, 3.933, 5.000 | 2.333, 3.333, 4.333 | 2.400, 3.400, 4.400 |
Criteria | Alternatives | |||||||
---|---|---|---|---|---|---|---|---|
CM | TBM | PM | TPM | CBM | OM | RM | RCM | |
C1 | 0.412, 0.538, 0.647 | 0.471, 0.613, 0.748 | 0.370, 0.513, 0.639 | 0.429, 0.571, 0.697 | 0.311, 0.445, 0.563 | 0.277, 0.403, 0.513 | 0.336, 0.471, 0.571 | 0.370, 0.496, 0.622 |
C2 | 0.496, 0.655, 0.790 | 0.504, 0.655, 0.790 | 0.336, 0.471, 0.580 | 0.370, 0.504, 0.622 | 0.303, 0.429, 0.521 | 0.319, 0.445, 0.521 | 0.471, 0.613, 0.748 | 0.378, 0.513, 0.630 |
C3 | 0.471, 0.613, 0.714 | 0.513, 0.664, 0.782 | 0.387, 0.521, 0.588 | 0.403, 0.555, 0.681 | 0.496, 0.630, 0.765 | 0.345, 0.471, 0.538 | 0.336, 0.462, 0.563 | 0.319, 0.445, 0.555 |
C4 | 0.420, 0.571, 0.697 | 0.496, 0.655, 0.798 | 0.353, 0.479, 0.571 | 0.370, 0.521, 0.639 | 0.345, 0.479, 0.613 | 0.277, 0.403, 0.521 | 0.277, 0.403, 0.504 | 0.328, 0.454, 0.563 |
C5 | 0.328, 0.454, 0.563 | 0.479, 0.630, 0.731 | 0.521, 0.681, 0.832 | 0.370, 0.496, 0.597 | 0.387, 0.521, 0.655 | 0.445, 0.605, 0.765 | 0.235, 0.361, 0.487 | 0.235, 0.361, 0.487 |
C6 | 0.277, 0.403, 0.529 | 0.454, 0.597, 0.739 | 0.580, 0.790, 1.000 | 0.370, 0.496, 0.622 | 0.403, 0.546, 0.689 | 0.361, 0.487, 0.613 | 0.319, 0.454, 0.588 | 0.294, 0.420, 0.546 |
C7 | 0.303, 0.429, 0.555 | 0.420, 0.563, 0.706 | 0.479, 0.613, 0.748 | 0.319, 0.454, 0.588 | 0.328, 0.454, 0.580 | 0.437, 0.588, 0.739 | 0.277, 0.403, 0.529 | 0.269, 0.395, 0.521 |
C8 | 0.328, 0.454, 0.580 | 0.437, 0.580, 0.723 | 0.521, 0.672, 0.824 | 0.319, 0.462, 0.605 | 0.353, 0.504, 0.655 | 0.420, 0.580, 0.739 | 0.277, 0.403, 0.529 | 0.286, 0.412, 0.538 |
C9 | 0.277, 0.403, 0.529 | 0.395, 0.521, 0.647 | 0.479, 0.630, 0.782 | 0.454, 0.597, 0.739 | 0.345, 0.471, 0.597 | 0.319, 0.445, 0.571 | 0.269, 0.395, 0.521 | 0.269, 0.395, 0.521 |
C10 | 0.286, 0.412, 0.538 | 0.445, 0.588, 0.731 | 0.504, 0.647, 0.790 | 0.437, 0.597, 0.756 | 0.319, 0.462, 0.605 | 0.319, 0.445, 0.571 | 0.269, 0.395, 0.521 | 0.286, 0.412, 0.538 |
C11 | 0.319, 0.445, 0.571 | 0.403, 0.529, 0.655 | 0.462, 0.597, 0.731 | 0.353, 0.479, 0.605 | 0.328, 0.471, 0.613 | 0.395, 0.521, 0.672 | 0.303, 0.395, 0.521 | 0.294, 0.395, 0.521 |
C12 | 0.361, 0.471, 0.605 | 0.462, 0.580, 0.723 | 0.471, 0.597, 0.739 | 0.370, 0.513, 0.672 | 0.412, 0.555, 0.714 | 0.387, 0.513, 0.639 | 0.319, 0.429, 0.555 | 0.294, 0.403, 0.529 |
C13 | 0.303, 0.429, 0.555 | 0.420, 0.563, 0.706 | 0.496, 0.664, 0.832 | 0.353, 0.487, 0.622 | 0.420, 0.571, 0.723 | 0.319, 0.445, 0.571 | 0.345, 0.471, 0.597 | 0.353, 0.479, 0.605 |
C14 | 0.303, 0.429, 0.555 | 0.437, 0.563, 0.689 | 0.479, 0.622, 0.765 | 0.429, 0.563, 0.697 | 0.387, 0.521, 0.655 | 0.328, 0.454, 0.580 | 0.252, 0.378, 0.504 | 0.244, 0.378, 0.513 |
C15 | 0.286, 0.412, 0.538 | 0.462, 0.597, 0.731 | 0.487, 0.639, 0.765 | 0.420, 0.546, 0.647 | 0.345, 0.471, 0.597 | 0.395, 0.538, 0.655 | 0.328, 0.454, 0.555 | 0.345, 0.471, 0.571 |
C16 | 0.286, 0.412, 0.513 | 0.437, 0.580, 0.697 | 0.496, 0.664, 0.807 | 0.403, 0.546, 0.689 | 0.412, 0.563, 0.689 | 0.437, 0.588, 0.714 | 0.361, 0.462, 0.588 | 0.378, 0.462, 0.597 |
C17 | 0.353, 0.429, 0.555 | 0.504, 0.630, 0.782 | 0.546, 0.697, 0.882 | 0.395, 0.504, 0.647 | 0.345, 0.437, 0.563 | 0.387, 0.513, 0.655 | 0.311, 0.387, 0.513 | 0.361, 0.437, 0.563 |
C18 | 0.361, 0.420, 0.546 | 0.496, 0.647, 0.832 | 0.496, 0.613, 0.765 | 0.370, 0.462, 0.588 | 0.395, 0.513, 0.664 | 0.429, 0.546, 0.697 | 0.361, 0.429, 0.563 | 0.378, 0.454, 0.580 |
C19 | 0.429, 0.445, 0.571 | 0.479, 0.571, 0.723 | 0.580, 0.622, 0.790 | 0.370, 0.471, 0.597 | 0.370, 0.496, 0.622 | 0.563, 0.706, 0.899 | 0.496, 0.639, 0.832 | 0.252, 0.353, 0.479 |
C20 | 0.319, 0.420, 0.546 | 0.471, 0.588, 0.731 | 0.412, 0.529, 0.672 | 0.361, 0.513, 0.664 | 0.286, 0.387, 0.513 | 0.429, 0.546, 0.689 | 0.454, 0.580, 0.756 | 0.345, 0.445, 0.571 |
C21 | 0.311, 0.412, 0.538 | 0.479, 0.605, 0.756 | 0.403, 0.521, 0.664 | 0.319, 0.429, 0.563 | 0.370, 0.513, 0.655 | 0.454, 0.571, 0.714 | 0.504, 0.639, 0.824 | 0.319, 0.429, 0.563 |
C22 | 0.412, 0.513, 0.639 | 0.437, 0.580, 0.723 | 0.504, 0.664, 0.824 | 0.336, 0.462, 0.588 | 0.429, 0.580, 0.731 | 0.445, 0.597, 0.748 | 0.361, 0.487, 0.613 | 0.286, 0.412, 0.538 |
C23 | 0.303, 0.429, 0.555 | 0.403, 0.538, 0.672 | 0.479, 0.622, 0.765 | 0.353, 0.479, 0.605 | 0.286, 0.412, 0.538 | 0.412, 0.538, 0.664 | 0.319, 0.454, 0.588 | 0.252, 0.378, 0.504 |
C24 | 0.294, 0.420, 0.546 | 0.345, 0.479, 0.613 | 0.504, 0.647, 0.790 | 0.311, 0.462, 0.613 | 0.378, 0.513, 0.647 | 0.437, 0.571, 0.706 | 0.328, 0.471, 0.613 | 0.311, 0.437, 0.563 |
C25 | 0.328, 0.454, 0.580 | 0.361, 0.496, 0.630 | 0.437, 0.571, 0.706 | 0.378, 0.513, 0.647 | 0.345, 0.471, 0.597 | 0.420, 0.555, 0.689 | 0.319, 0.445, 0.571 | 0.277, 0.403, 0.529 |
C26 | 0.303, 0.429, 0.555 | 0.437, 0.597, 0.756 | 0.504, 0.672, 0.840 | 0.403, 0.546, 0.689 | 0.378, 0.513, 0.647 | 0.445, 0.580, 0.714 | 0.345, 0.479, 0.613 | 0.252, 0.378, 0.504 |
C27 | 0.319, 0.445, 0.571 | 0.395, 0.529, 0.664 | 0.504, 0.664, 0.824 | 0.345, 0.479, 0.613 | 0.437, 0.580, 0.723 | 0.403, 0.529, 0.655 | 0.328, 0.462, 0.597 | 0.303, 0.429, 0.555 |
C28 | 0.311, 0.437, 0.563 | 0.403, 0.546, 0.689 | 0.471, 0.622, 0.773 | 0.328, 0.462, 0.597 | 0.429, 0.580, 0.731 | 0.395, 0.529, 0.664 | 0.328, 0.454, 0.580 | 0.244, 0.370, 0.496 |
C29 | 0.269, 0.395, 0.521 | 0.420, 0.563, 0.706 | 0.504, 0.664, 0.824 | 0.403, 0.563, 0.723 | 0.387, 0.521, 0.655 | 0.471, 0.613, 0.756 | 0.370, 0.496, 0.622 | 0.277, 0.403, 0.529 |
C30 | 0.294, 0.420, 0.546 | 0.412, 0.555, 0.697 | 0.479, 0.622, 0.765 | 0.429, 0.563, 0.697 | 0.319, 0.445, 0.571 | 0.378, 0.521, 0.664 | 0.328, 0.462, 0.597 | 0.235, 0.361, 0.487 |
C31 | 0.277, 0.403, 0.529 | 0.328, 0.454, 0.580 | 0.429, 0.571, 0.714 | 0.370, 0.496, 0.622 | 0.328, 0.462, 0.597 | 0.361, 0.504, 0.647 | 0.319, 0.445, 0.571 | 0.311, 0.445, 0.580 |
C32 | 0.361, 0.504, 0.647 | 0.387, 0.513, 0.639 | 0.462, 0.613, 0.765 | 0.370, 0.504, 0.639 | 0.412, 0.546, 0.681 | 0.387, 0.538, 0.689 | 0.345, 0.487, 0.630 | 0.336, 0.471, 0.605 |
C33 | 0.378, 0.504, 0.630 | 0.454, 0.588, 0.723 | 0.370, 0.521, 0.672 | 0.353, 0.479, 0.605 | 0.387, 0.529, 0.672 | 0.361, 0.496, 0.630 | 0.294, 0.420, 0.546 | 0.303, 0.429, 0.555 |
Criteria | Alternatives | |||||||
---|---|---|---|---|---|---|---|---|
CM | TBM | PM | TPM | CBM | OM | RM | RCM | |
C1 | 0.106, 0.180, 0.281 | 0.122, 0.205, 0.325 | 0.096, 0.172, 0.277 | 0.111, 0.191, 0.303 | 0.080, 0.149, 0.245 | 0.072, 0.135, 0.223 | 0.087, 0.157, 0.248 | 0.096, 0.166, 0.270 |
C2 | 0.135, 0.228, 0.346 | 0.137, 0.228, 0.346 | 0.092, 0.164, 0.254 | 0.101, 0.176, 0.273 | 0.082, 0.149, 0.229 | 0.087, 0.155, 0.229 | 0.128, 0.214, 0.328 | 0.103, 0.179, 0.276 |
C3 | 0.054, 0.090, 0.135 | 0.058, 0.097, 0.147 | 0.044, 0.076, 0.111 | 0.046, 0.081, 0.128 | 0.056, 0.092, 0.144 | 0.039, 0.069, 0.101 | 0.038, 0.068, 0.106 | 0.036, 0.065, 0.105 |
C4 | 0.056, 0.098, 0.157 | 0.066, 0.112, 0.179 | 0.047, 0.082, 0.128 | 0.049, 0.089, 0.143 | 0.046, 0.082, 0.138 | 0.037, 0.069, 0.117 | 0.037, 0.069, 0.113 | 0.044, 0.078, 0.126 |
C5 | 0.028, 0.056, 0.100 | 0.041, 0.077, 0.130 | 0.045, 0.084, 0.148 | 0.032, 0.061, 0.106 | 0.033, 0.064, 0.117 | 0.039, 0.074, 0.136 | 0.020, 0.044, 0.087 | 0.020, 0.044, 0.087 |
C6 | 0.041, 0.088, 0.162 | 0.068, 0.130, 0.226 | 0.087, 0.172, 0.305 | 0.055, 0.108, 0.190 | 0.060, 0.119, 0.210 | 0.054, 0.106, 0.187 | 0.048, 0.099, 0.179 | 0.044, 0.091, 0.167 |
C7 | 0.017, 0.035, 0.066 | 0.024, 0.046, 0.085 | 0.028, 0.050, 0.090 | 0.018, 0.037, 0.070 | 0.019, 0.037, 0.069 | 0.025, 0.048, 0.089 | 0.016, 0.033, 0.063 | 0.016, 0.032, 0.062 |
C8 | 0.029, 0.058, 0.106 | 0.039, 0.074, 0.133 | 0.046, 0.086, 0.151 | 0.028, 0.059, 0.111 | 0.031, 0.065, 0.120 | 0.037, 0.074, 0.136 | 0.025, 0.052, 0.097 | 0.025, 0.053, 0.099 |
C9 | 0.016, 0.033, 0.063 | 0.023, 0.043, 0.076 | 0.028, 0.052, 0.092 | 0.026, 0.049, 0.087 | 0.020, 0.038, 0.071 | 0.019, 0.036, 0.068 | 0.016, 0.032, 0.062 | 0.016, 0.032, 0.062 |
C10 | 0.028, 0.058, 0.109 | 0.043, 0.083, 0.148 | 0.049, 0.091, 0.160 | 0.042, 0.084, 0.153 | 0.031, 0.065, 0.122 | 0.031, 0.062, 0.116 | 0.026, 0.055, 0.105 | 0.028, 0.058, 0.109 |
C11 | 0.025, 0.050, 0.092 | 0.031, 0.059, 0.105 | 0.036, 0.067, 0.117 | 0.027, 0.053, 0.097 | 0.025, 0.052, 0.099 | 0.031, 0.058, 0.108 | 0.023, 0.044, 0.084 | 0.023, 0.044, 0.084 |
C12 | 0.029, 0.055, 0.101 | 0.038, 0.067, 0.121 | 0.038, 0.069, 0.124 | 0.030, 0.060, 0.112 | 0.033, 0.064, 0.120 | 0.031, 0.060, 0.107 | 0.026, 0.050, 0.093 | 0.024, 0.047, 0.089 |
C13 | 0.056, 0.095, 0.146 | 0.077, 0.125, 0.186 | 0.091, 0.147, 0.219 | 0.065, 0.108, 0.163 | 0.077, 0.127, 0.190 | 0.059, 0.099, 0.150 | 0.063, 0.104, 0.157 | 0.065, 0.106, 0.159 |
C14 | 0.056, 0.097, 0.155 | 0.081, 0.128, 0.193 | 0.089, 0.141, 0.214 | 0.079, 0.128, 0.195 | 0.072, 0.118, 0.183 | 0.061, 0.103, 0.162 | 0.047, 0.086, 0.141 | 0.045, 0.086, 0.143 |
C15 | 0.046, 0.083, 0.133 | 0.075, 0.120, 0.181 | 0.079, 0.128, 0.190 | 0.068, 0.110, 0.160 | 0.056, 0.094, 0.148 | 0.064, 0.108, 0.162 | 0.053, 0.091, 0.137 | 0.056, 0.094, 0.142 |
C16 | 0.043, 0.076, 0.115 | 0.066, 0.107, 0.157 | 0.075, 0.122, 0.181 | 0.061, 0.100, 0.155 | 0.062, 0.103, 0.155 | 0.066, 0.108, 0.160 | 0.055, 0.085, 0.132 | 0.057, 0.085, 0.134 |
C17 | 0.050, 0.072, 0.110 | 0.072, 0.105, 0.155 | 0.077, 0.117, 0.175 | 0.056, 0.084, 0.128 | 0.049, 0.073, 0.112 | 0.055, 0.086, 0.130 | 0.044, 0.065, 0.102 | 0.051, 0.073, 0.112 |
C18 | 0.089, 0.143, 0.254 | 0.122, 0.220, 0.387 | 0.122, 0.208, 0.356 | 0.091, 0.157, 0.274 | 0.097, 0.174, 0.309 | 0.105, 0.186, 0.324 | 0.089, 0.146, 0.262 | 0.093, 0.154, 0.270 |
C19 | 0.113, 0.160, 0.278 | 0.127, 0.206, 0.352 | 0.153, 0.224, 0.384 | 0.098, 0.169, 0.290 | 0.098, 0.179, 0.302 | 0.149, 0.254, 0.437 | 0.131, 0.230, 0.405 | 0.067, 0.127, 0.233 |
C20 | 0.032, 0.057, 0.100 | 0.047, 0.079, 0.134 | 0.041, 0.071, 0.123 | 0.036, 0.069, 0.122 | 0.029, 0.052, 0.094 | 0.043, 0.074, 0.127 | 0.045, 0.078, 0.139 | 0.034, 0.060, 0.105 |
C21 | 0.038, 0.068, 0.124 | 0.058, 0.100, 0.175 | 0.049, 0.086, 0.154 | 0.039, 0.071, 0.130 | 0.045, 0.085, 0.152 | 0.055, 0.094, 0.165 | 0.061, 0.106, 0.190 | 0.039, 0.071, 0.130 |
C22 | 0.070, 0.107, 0.165 | 0.074, 0.121, 0.187 | 0.086, 0.139, 0.213 | 0.057, 0.097, 0.152 | 0.073, 0.121, 0.189 | 0.076, 0.125, 0.193 | 0.061, 0.102, 0.158 | 0.048, 0.086, 0.139 |
C23 | 0.047, 0.083, 0.134 | 0.063, 0.104, 0.163 | 0.074, 0.120, 0.185 | 0.055, 0.093, 0.147 | 0.044, 0.080, 0.130 | 0.064, 0.104, 0.161 | 0.050, 0.088, 0.143 | 0.039, 0.073, 0.122 |
C24 | 0.051, 0.092, 0.150 | 0.059, 0.105, 0.168 | 0.087, 0.142, 0.216 | 0.054, 0.102, 0.168 | 0.065, 0.113, 0.177 | 0.075, 0.126, 0.193 | 0.057, 0.103, 0.168 | 0.054, 0.096, 0.154 |
C25 | 0.048, 0.083, 0.134 | 0.053, 0.091, 0.145 | 0.065, 0.105, 0.163 | 0.056, 0.094, 0.149 | 0.051, 0.086, 0.137 | 0.062, 0.102, 0.159 | 0.047, 0.082, 0.132 | 0.041, 0.074, 0.122 |
C26 | 0.048, 0.083, 0.133 | 0.069, 0.116, 0.181 | 0.080, 0.131, 0.201 | 0.064, 0.106, 0.165 | 0.060, 0.100, 0.155 | 0.070, 0.113, 0.171 | 0.055, 0.093, 0.147 | 0.040, 0.073, 0.121 |
C27 | 0.034, 0.067, 0.125 | 0.042, 0.080, 0.145 | 0.054, 0.101, 0.180 | 0.037, 0.073, 0.134 | 0.047, 0.088, 0.158 | 0.043, 0.080, 0.143 | 0.035, 0.070, 0.130 | 0.032, 0.065, 0.121 |
C28 | 0.053, 0.107, 0.191 | 0.068, 0.134, 0.233 | 0.080, 0.152, 0.262 | 0.056, 0.113, 0.202 | 0.073, 0.142, 0.248 | 0.067, 0.129, 0.225 | 0.056, 0.111, 0.196 | 0.041, 0.090, 0.168 |
C29 | 0.018, 0.036, 0.069 | 0.028, 0.052, 0.094 | 0.033, 0.061, 0.110 | 0.026, 0.052, 0.096 | 0.025, 0.048, 0.087 | 0.031, 0.056, 0.101 | 0.024, 0.046, 0.083 | 0.018, 0.037, 0.070 |
C30 | 0.030, 0.061, 0.113 | 0.042, 0.081, 0.145 | 0.049, 0.090, 0.159 | 0.044, 0.082, 0.145 | 0.032, 0.065, 0.119 | 0.038, 0.076, 0.138 | 0.033, 0.067, 0.124 | 0.024, 0.053, 0.101 |
C31 | 0.018, 0.037, 0.069 | 0.021, 0.041, 0.076 | 0.028, 0.052, 0.093 | 0.024, 0.045, 0.081 | 0.021, 0.042, 0.078 | 0.023, 0.046, 0.085 | 0.021, 0.040, 0.075 | 0.020, 0.040, 0.076 |
C32 | 0.038, 0.076, 0.139 | 0.041, 0.077, 0.137 | 0.049, 0.092, 0.164 | 0.039, 0.076, 0.137 | 0.043, 0.082, 0.146 | 0.041, 0.081, 0.148 | 0.036, 0.073, 0.135 | 0.035, 0.071, 0.130 |
C33 | 0.033, 0.064, 0.114 | 0.040, 0.074, 0.130 | 0.033, 0.066, 0.121 | 0.031, 0.060, 0.109 | 0.034, 0.067, 0.121 | 0.032, 0.063, 0.114 | 0.026, 0.053, 0.099 | 0.027, 0.054, 0.100 |
Maintenance Strategies | Closeness Coefficients and Ranking | |||
---|---|---|---|---|
|
| Cci | Rank | |
Corrective Maintenance (CM) | 5.233 | 0.628 | 0.107 | 7 |
Time-Based Maintenance (TBM) | 5.109 | 0.772 | 0.131 | 2 |
Preventive Maintenance (PM) | 5.076 | 0.796 | 0.136 | 1 |
Total Predictive Maintenance (TPM) | 5.186 | 0.664 | 0.114 | 4 |
Condition Based Maintenance (CBM) | 5.190 | 0.663 | 0.113 | 5 |
Opportunistic Maintenance (OM) | 5.166 | 0.703 | 0.120 | 3 |
Routine Maintenance (RM) | 5.222 | 0.656 | 0.112 | 6 |
Reliability Centered Maintenance (RCM) | 5.270 | 0.577 | 0.099 | 8 |
AHP | Analytical Hierarchy Process |
BNP | Best Non-Fuzzy Value |
CBM | Condition-Based Maintenance |
CI | Consistency Index |
CC | Closeness Coefficient |
CR | Consistency Ratio |
CM | Corrective Maintenance |
DOM | Design-Out Maintenance |
FNIS | Fuzzy Negative Ideal Solution |
FPIS | Fuzzy Positive Ideal Solution |
MCDMM | Multi Criteria Decision Making Methods |
OM | Opportunistic Maintenance |
PM | Preventive Maintenance |
RCM | Reliability Centered Maintenance |
RI | Random Index |
RM | Routine Maintenance |
TBM | Time-Based Maintenance |
TFN | Triangular Fuzzy Number |
TOPSIS | Technique for Order Performance by Similarity to Ideal Solution |
TPM | Total Productive Maintenance |
[1] | E. Studies and R. S. Velmurugan, “Maintenance Strategy Selection and its Impact on Maintenance Function - A International Journal of Operations & Production Management Article information :,” no. August 2016, 2015, |
[2] | S. Kamaruddin, “Selection of Optimal Maintenance Policy by Using Fuzzy Multi Criteria Decision Making Method,” pp. 435–443, 2012. |
[3] | S. G. Mong, S. F. Mohamad, and M. S. Misnan, “Maintenance Management Model : an Identification of Key Elements for Value-Based Maintenance Management by Local Authority,” no. August, 2018, |
[4] | M. Momeni, M. R. Fathi, M. K. Zarchi, and S. Azizollahi, “A Fuzzy TOPSIS-Based Approach to Maintenance Strategy Selection : A Case Study,” vol. 8, no. 3, pp. 699–706, 2011. |
[5] | S. G. Mong, S. F. Mohamed, and M. S. Misnan, “Current issues and barriers of maintenance management practices for public facilities in Malaysia,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 119–125, 2019, |
[6] |
S. Tobar, “Maintenance Management Definition and Characterization”, [Online]. Available:
https://www.academia.edu/39013448/PART_1_Maintenance_Management_Definition_and_Characterization |
[7] | X. Mehmeti, B. Mehmeti, and R. Sejdiu, “The equipment maintenance management in manufacturing enterprises,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 800–802, 2018, |
[8] | M. Saxena, “Value Added Machinery & Transportation Equipment : India & China Forecasting ISSN 2319-9725,” no. June, 2021. |
[9] | S. Shahbazi, M. Kurdve, and M. Bjelkemyr, “Industrial waste management within manufacturing : A comparative study of Tools, policies, visions and concepts,” no. June 2016, 2013. |
[10] | L. Kloda, “Evidence Based Library and Information Practice,” Evid. Based Libr. Inf. Pract., vol. 11, no. 2, pp. 3–3, 2016, |
[11] | A. Kalyani, “Skill-Building Process and Strategies for Development,” no. November 2019, pp. 769–779, 2020, |
[12] | H. Javadikasgari, E. G. Soltesz, and A. M. Gillinov, “Surgery for Atrial Fibrillation,” Atlas of Cardiac Surgical Techniques. pp. 479–488, 2018. |
[13] | A. Vafadar, M. Tolouei-Rad, K. Hayward, and K. Abhary, “Technical feasibility analysis of utilizing special purpose machine tools,” J. Manuf. Syst., vol. 39, no. May, pp. 53–62, 2016, |
[14] | A. Y. Rusin and Y. V. Baryshev, “Improving Equipment Reliability and System Maintenance and Repair Efficiency,” Civ. Eng. J., vol. 5, no. 8, pp. 1799–1811, 2019, |
[15] | T. S. Nanjundeswaraswamy, Shreyas. R, and S. Kashyap, “Analyzing the Machine Utilization and Overall Equipment Effectiveness of Machine Shop,” Int. J. Eng. Res. Technol., vol. 3, no. 17, 2018, [Online]. Available: |
[16] | A. Kumar, “A Systematic Review on Redundancy Techniques for Reliability Analysis of Repairable and Non-repairable Systems,” no. July 2023, 2024. |
[17] | C. Wolff and B. Schmitz, “Determining cost-optimal availability for production equipment using service level engineering,” Proc. - 2017 IEEE 19th Conf. Bus. Informatics, CBI 2017, vol. 1, no. September, pp. 176–185, 2017, |
[18] | L. Del, C. Ng, M. Enrique, and H. Korner, “Overall Equipment Effectiveness : Systematic Literature Review and Overview applied sciences Overall Equipment E ff ectiveness : Systematic Literature Review and Overview of Di ff erent Approaches,” no. September, 2020, |
[19] | S. Singh and N. Chaudhary, “Employee Productivity : An Analysis of Dimensions and Methodology through Systematic Literature Review Employee Productivity : An Analysis of Dimensions and Methodology through Systematic Literature Review,” no. September, 2022. |
[20] | M. Abdelaal, H. Emam, and P. Farrell, “Equipment Productivity in Infrastructure Projects in GCC Countries,” no. May, 2016. |
[21] | S. Mostafa, S. Lee, J. Dumrak, and N. Chileshe, “Lean thinking for a maintenance process,” Prod. Manuf. Res., vol. 3, no. 1, pp. 1–37, 2015, |
[22] | M. Ghiassi, “A Systematic Approach to Corrective Maintenance.,” no. January 1994, 2020. |
[23] | E. I. Basri, I. H. A. Razak, H. Ab-Samat, and S. Kamaruddin, “Preventive maintenance (PM) planning: A review,” J. Qual. Maint. Eng., vol. 23, no. 2, pp. 114–143, 2017, |
[24] | A. Gillespie, “Condition Based Maintenance : Theory, Methodology, & Application Amanda Gillespie Table of Contents,” Reliab. Maintainab. Symp. Tarpon Springs, FL, no. September, p. 1, 2015, [Online]. Available: |
[25] | D. C. Brauer and G. D. Brauer, Reliability-Centered Maintenance, vol. R-36, no. 1. 1987. |
[26] | W. Nurul, H. Wan, S. A. Othman, M. Ramli, S. Aqilah, and A. Rashid, “Utilizing the Fuzzy Analytical Hierarchy Process (FAHP) Approach to Identify the Best Online Food Delivery Services,” vol. 9, no. 1, pp. 1–12, 2023. |
[27] | D. J. Simjanović, N. O. Vesić, B. M. Randjelović, and D. Vujadinović, “Cyber Security Criteria : Fuzzy AHP approach,” no. 1, 2023. |
[28] | M. Sobandi, D. Putra, S. Andryana, and A. Gunaryati, “Fuzzy Analytical Hierarchy Process Method to Determine the Quality of Gemstones,” vol. 2018, 2018. |
[29] | R. L. N. Murty, S. G. Kondamudi, M. V Suryanarayana, and P. Giribabu, “application of buckl ey ’ s fuzzy ahp to identify the most important factor affecting the unorganized micro- entrepreneurs ’ borro wing decision,” vol. 11, no. 6, pp. 665–674, 2020, |
[30] | R. D. F. S. M. Russo and R. Camanho, “Criteria in AHP: A systematic review of literature,” Procedia Comput. Sci., vol. 55, no. Itqm, pp. 1123–1132, 2015, |
[31] | A. Çebİ and H. Karal, “An application of fuzzy analytic hierarchy process (FAHP) for evaluating students ’ project,” vol. 12, no. 3, pp. 120–132, 2017, |
[32] | F. Mulubrhan, A. A. Mokhtar, and M. Muhammad, “Comparative Analysis between Fuzzy and Traditional Analytical Hierarchy Process,” vol. 6, pp. 0–4, 2014. |
[33] | H. Huang and C. Ho, “Applying the Fuzzy Analytic Hierarchy Process to Consumer Decision-Making Regarding Home Stays,” vol. 5, no. February 2013, 2016, |
[34] | C. C. Sun, “A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods,” Expert Syst. Appl., vol. 37, no. 12, pp. 7745–7754, 2010, |
[35] | B. N. Omamalin, S. R. Canoy, and H. M. Rara, “Differentiating total dominating sets in the join, corona and composition of graphs,” Int. J. Math. Anal., vol. 8, no. 25–28, pp. 1275–1284, 2014, |
[36] | S. Saghafian and S. R. Hejazi, “Multi-criteria group decision making using a modified fuzzy TOPSIS procedure,” Proc. - Int. Conf. Comput. Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 2, pp. 215–220, 2005, |
[37] | P. K. Gade, “Evaluation of Multi Criteria Decision Making Methods for Potential Use in Application Security,” 2014. |
[38] | P. K. Tarei, J. J. Thakkar, and B. Nag, “A hybrid approach for quantifying supply chain risk and prioritizing the risk drivers: A case of Indian petroleum supply chain,” J. Manuf. Technol. Manag., vol. 29, no. 3, pp. 533–569, 2018, |
[39] | M. Askari, H. R. Shokrizadeh, and N. Ghane, “A Fuzzy AHP Model in Risk Ranking,” vol. 6, no. 14, pp. 194–203, 2014. |
[40] | H. Fu, Y. Chen, and G. Wang, “Using a Fuzzy Analytic Hierarchy Process to Formulate an E ff ectual Tea Assessment System,” 2020. |
[41] | G. Kabir and M. A. A. Hasin, “Evaluation of customer oriented success factors in mobile commerce using fuzzy AHP,” vol. 4, no. 2, pp. 361–386, 2013, |
[42] | A. Abay, G. Barbieri, and K. Woldearegay, “GIS-based Landslide Susceptibility Evaluation Using Analytical Hierarchy Process (AHP) Approach : The Case of Tarmaber District, Ethiopia,” vol. 11, no. 1, pp. 14–36, 2019. |
[43] | N. F. Mahad, “Analysis of Fuzzy AHP-TOPSIS Methods in Multi Criteria Decision Making : Literature Review Analysis of Fuzzy AHP-TOPSIS Methods in Multi Criteria Decision Making : Literature Review”, |
[44] | A. Basahel and O. Taylan, “Using fuzzy AHP and fuzzy TOPSIS approaches for assessing safety conditions at worksites in construction industry,” Int. J. Saf. Secur. Eng., vol. 6, no. 4, pp. 728–745, 2016, |
[45] | H. Kazan, E. Karaman, and B. Y. Akcali, “Assessment of TEOG Examination Success : Topsis Multi-Criteria Decision- Making Method Practice Assessment of TEOG Examination Success : Topsis Multi-Criteria Decision-Making Method Practice,” no. July, 2015, |
[46] | N. B. Kore, K. Ravi, and S. B. Patil, “A Simplified Description of FUZZY TOPSIS Method for Multi Criteria Decision Making,” Int. Res. J. Eng. Technol., vol. 4, no. 5, pp. 2395–56, 2017. |
APA Style
Ayalew, G. G., Ayalew, G. M. (2025). Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection. International Journal of Management and Fuzzy Systems, 11(2), 33-61. https://doi.org/10.11648/j.ijmfs.20251102.11
ACS Style
Ayalew, G. G.; Ayalew, G. M. Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection. Int. J. Manag. Fuzzy Syst. 2025, 11(2), 33-61. doi: 10.11648/j.ijmfs.20251102.11
@article{10.11648/j.ijmfs.20251102.11, author = {Girmay Getawa Ayalew and Genet Melkamu Ayalew}, title = {Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection }, journal = {International Journal of Management and Fuzzy Systems}, volume = {11}, number = {2}, pages = {33-61}, doi = {10.11648/j.ijmfs.20251102.11}, url = {https://doi.org/10.11648/j.ijmfs.20251102.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmfs.20251102.11}, abstract = {Maintenance is the combination of all technical, administrative, and managerial actions during the life cycle of an item intended to retain it in, or restore it to a state in which it can perform the required function under normal stated operating conditions. Maintenance management is a crucial element that governs the economic value of the organization itself. Maintenance costs constitute a major part of the total operating costs of all construction equipment. Currently, industries are facing a lot of challenges encountered due to the continually evolving world of technologies, and environmental and safety requirements. Thus, the study was focused on Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection. The evaluation was a multiple-criteria decision-making problem. The fuzzy AHP and fuzzy TOPSIS methods were used as an evaluation tool. To achieve the objective, the data were collected from primary and secondary source of data collection. The method of data analysis for this study was made by integrated methodology, and the analysis was made by using Microsoft Excel. The study revealed that skill development, production waste, product quality, health and safety training, and facilities are important criteria. The finding revealed that preventive maintenance and time-based maintenance were the best maintenance strategies. }, year = {2025} }
TY - JOUR T1 - Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection AU - Girmay Getawa Ayalew AU - Genet Melkamu Ayalew Y1 - 2025/06/30 PY - 2025 N1 - https://doi.org/10.11648/j.ijmfs.20251102.11 DO - 10.11648/j.ijmfs.20251102.11 T2 - International Journal of Management and Fuzzy Systems JF - International Journal of Management and Fuzzy Systems JO - International Journal of Management and Fuzzy Systems SP - 33 EP - 61 PB - Science Publishing Group SN - 2575-4947 UR - https://doi.org/10.11648/j.ijmfs.20251102.11 AB - Maintenance is the combination of all technical, administrative, and managerial actions during the life cycle of an item intended to retain it in, or restore it to a state in which it can perform the required function under normal stated operating conditions. Maintenance management is a crucial element that governs the economic value of the organization itself. Maintenance costs constitute a major part of the total operating costs of all construction equipment. Currently, industries are facing a lot of challenges encountered due to the continually evolving world of technologies, and environmental and safety requirements. Thus, the study was focused on Integrating Fuzzy AHP and Fuzzy TOPSIS Models for Construction Equipment Maintenance Strategy Selection. The evaluation was a multiple-criteria decision-making problem. The fuzzy AHP and fuzzy TOPSIS methods were used as an evaluation tool. To achieve the objective, the data were collected from primary and secondary source of data collection. The method of data analysis for this study was made by integrated methodology, and the analysis was made by using Microsoft Excel. The study revealed that skill development, production waste, product quality, health and safety training, and facilities are important criteria. The finding revealed that preventive maintenance and time-based maintenance were the best maintenance strategies. VL - 11 IS - 2 ER -